

Atmospheric Chemistry

- Mechanism Includes 45-85 Species
- Hundreds of Reactions
- Many Species Participate in Multiple Reactions
- Research Has Shown that 1 gram of HC can
 Produce More than 1 gram of Ozone

MIR Examples

• Crop:

1.0g Beta-Pinene Produces 4.4 g Ozone

• Fuel:

1.0g Toluene Produces 2.7 g Ozone

Atmospheric Transport ("Advection")

Horizontal and Vertical winds

Atmospheric Diffusion

Turbulence causes pollutants to move from high concentrations to low concentrations

Emissions

Dry-Gas Deposition

Pollutants can be removed by contact or reaction with any surface

Photochemical Grid Model Inputs

Air Quality Inputs

Initial Conditions Boundary Conditions

Geographic Inputs

Land Use Surface Elevation

Meteorological Inputs

Wind speed and Direction
Air Temperature
Humidity
Solar Radiation Intensity
Mixing Heights

Figure 6. Surface-layer wind fields for September 7, 1984 at 0800 PDT simulated using the Diagnostic Wind Model (DWM, 1991).

Gridded Emissions Inventory

Figure 8. Area source NOx emissions (g-mole/hr) for the South Central Coast air base on September 7, 1984 at 1700 PDT.

Model Output

Hourly Pollutant Concentrations

Dry-Gas Deposition (cont)

Atmospheric Turbulence

Near-Surface Diffusion

Plant Canopy Effects **

** In an air quality model, defined by Land Use Category

Land Use Categories in Most Air Quality Models

- 1. Urban
- 2. Agriculture
- 3. Rangeland
- 4. Deciduous Forest
- 5. Conferous Forest/ Wetland

- 6. Mixed Forest
- 7. Water
- 8. Barren Land
- 9. Non-Forest Wetlands
- 10. Mixed Agriculture/ Range
- 11. Rocky with low shrubs

Models In Use

SAQM (ARB, 1990) CMAQ (USEPA, 1996) CAMX (ENVIRON, 1992)

Differences Between Episodes

Meteorology Emissions

Assessing Impacts From Agricultural Crops

Ozone Uptake **Production of Ozone Precursors**